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A B S T R A C T

In biopolymer-soil stabilization, biopolymers function in the soil either as viscous fluids or rigid gels. However, 
the influence of these hydrogel states on soil liquefaction resistance and their underlying mechanisms remain 
insufficiently understood. This study examines the seismic response of sand treated with biopolymers under 
small-to-medium strain cyclic loading, with a focus on the efficacy of Cr3+-crosslinked xanthan gum (CrXG) in 
mitigating liquefaction. Liquefaction resistance and dynamic properties of CrXG-treated soil were compared 
against thermogelation and non-gelling viscous biopolymer treatments using cyclic direct simple shear and 
resonant column tests. CrXG treatment at 1 % content improved liquefaction resistance (CRR10) from 0.088 to 
0.687 by preventing shear strain accumulation and pore pressure buildup, with enhancing dynamic shear 
stiffness and delaying stiffness degradation and damping ratio changes to higher strain levels. In contrast, soils 
treated with non-gelling viscous XG exhibited limited reinforcement under large strain cyclic loading, showing 
earlier liquefaction and lower CRR10 compared than untreated sand, alongside reduced dynamic shear modulus 
and rapid stiffness degradation. Comparisons across varying earthquake moment magnitudes revealed that CrXG- 
treated soil achieved liquefaction resistance comparable to other soil stabilization methods and demonstrated 
greater improvement efficiency than thermogelation biopolymers requiring thermal treatment. These findings 
highlight the potential of CrXG as a sustainable and practical solution for improving liquefiable soil stability 
under seismic loading.

1. Introduction

Liquefaction, which is commonly observed during earthquakes in 
saturated and loose sand deposits, poses a significant threat owing to 
ground subsidence and structural collapse [1]. This phenomenon occurs 
under cyclic or vibratory loads in saturated soils, leading to a rapid loss 
of shear strength as excess pore water pressure accumulates, causing the 
soil to behave like a liquid [2,3]. Over recent decades, extensive studies 
have investigated the undrained cyclic loading behavior of sandy soils 
using through laboratory tests, such as triaxial, torsional, and simple 
shear tests, to understand the effects of soil composition, structure, and 
state on liquefaction. Findings reveal that factors like relative density [4,
5], fine content [6,7], coefficient of uniformity [8], particle shapes [9,
10] and consolidation history critically influence the liquefaction sus
ceptibility and cyclic strength of sandy soils [11–13]. For instance, 

liquefaction resistance tends to increase with soil density, irrespective of 
consolidation path, while phase transformation behavior remains 
similar across various loading conditions [11]. Additionally, aging ef
fects, gravel content, and initial static shear stress are identified as 
influential in liquefaction behavior, with asymmetrical loading condi
tions notably alter liquefaction susceptibility and failure mechanisms 
[12,14]. Further studies underscore the importance of soil fabric [3], 
void ratio, effective stress, and stress history on liquefaction behavior, 
prompting the development of reinforcement methods like soil 
replacement [15], densification [16,17], and chemical solidification 
[18,19] to mitigate liquefaction in loose sand deposits. However, con
cerns have emerged over the high energy consumption, costs, and po
tential environmental issues associated with physical methods and 
chemical additives, such as cement.

In the context of sustainable soil strengthening, biopolymer-soil 
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treatment (BPST) has emerged as an environmentally friendly approach, 
leveraging exo-cultivated biopolymers derived from living organisms. 
Notable examples include xanthan gum (XG), corn starch, and guar gum, 
which have shown effectiveness in enhancing soil properties, such as 
increasing dry strength, improving erosion resistance, and reducing 
hydraulic conductivity, even at low dosages across various soil types 
[20–22]. These improvements stem from mechanisms like particle 
coating (conglomeration) and pore filling with viscous hydrogels 
[23–25], along with electrostatic bonding between the polymeric chains 
and charged clay particles [26,27], making BPST a promising option for 
mitigating geotechnical hazards. However, BPST faces technical chal
lenges in cohesionless sand. Polysaccharide biopolymer hydrogels, 
which are typically viscous but non-gelling, have negligible tensile 
strength in their initial hydrate state, leading to low initial wet strength 
before dehydration. Their hydrophilic nature also raises concerns about 
durability under cyclic wetting-drying processes [28,29]. Recent ad
vancements in BPST have introduced gelation methods, such as ther
mogelation (e.g., agar gum and gellan gum (GG)) and multivalent cation 
crosslinking (e.g., Na+/Ca2+/Cr3+ crosslinked XG), significantly 
enhancing the initial wet strength in cohesionless soils by forming 
intergranular connections and pore filling with rigid gel [30–32]. These 
improvements suggest potential for gelation biopolymer treatment in 
mitigating shallow-depth liquefaction of cohesionless sands.

A clear understanding of cyclic shear loading required to induce 
liquefaction and residual pore water pressure in coarse soil is critical for 
evaluating liquefaction resistance and soil stability under seismic 
loading [33]. Liquefaction resistance parameters, typically derived from 
cyclic direct simple shear (CDSS) or cyclic triaxial (CTX) tests, include 
the cyclic stress ratio (CSR), representing the cyclic shear load relative to 
vertical or mean stress, and the cyclic resistance ratio (CRR), defined as 
the CSR at the number of loading cycles (NL) that induces liquefaction 
[34,35]. CDSS testing offers a stress field that better replicates the in-situ 
conditions associated with vertically propagating shear waves, 
providing valuable insights into CRR [36].

A few of BPST studies on the soil liquefaction have employed CTX 
tests [37–39]. These tests, particularly under stress- and 
strain-controlled conditions, have demonstrated that soil stabilization 
using agar gum, requiring thermogelation at 85◦C, effectively reduces 
excess pore water pressure in sand under cyclic loading [39]. However, 
the liquefaction resistance of biopolymer-treated soils has not been 
assessed through CDSS tests, nor has the potential of cation-crosslinked 
biopolymers, which offer adjustable gelation times and rigidity at 
ambient temperatures [30], been fully explored. Additionally, limited 
research has investigated the dynamic shear modulus (G) and damping 
ratio of biopolymer-treated soils under seismic loading within the 
small-to-medium strain regime (i.e., 10− 4 < γ < 10− 2), which are 
essential for ground response analysis.

This study aims to address these research gaps by examining the 
effect of CrXG biopolymer treatment on the seismic response of sand 
within the small-to-medium strain regime, particularly focusing on its 
liquefaction mitigation capabilities. The study compares the liquefaction 
resistance and dynamic properties of CrXG-treated soil with untreated 
soils and two other biopolymer-treated soils (thermogelation type and 
non-gelling viscous type) to evaluate the differences in effectiveness 
across hydrogel states. Undrained stress-controlled CDSS and resonant 
column (RC) tests were conducted to analyze cyclic shear responses, 
excess pore water pressure, CSR, and CRR-NL relationships, and dynamic 
properties (G and damping ratio) and their degradation. Based on 
experimental results, this paper discusses different improvement 
mechanisms of biopolymers under seismic conditions, evaluates 
competitiveness of these biopolymer treatments in liquefaction mitiga
tion, and explores potential applications of CrXG treatment as a sus
tainable strategy for reinforcing shallow soils with high groundwater 
levels in liquefiable regions.

2. Materials and methods

2.1. Materials

2.1.1. Host soil: jumunjin sand
Jumunjin sand, a coarse-grained soil representative of South Korea 

and frequently used in liquefaction studies [40–42], was selected for this 
research. The particle size distribution of this soil is shown in Fig. 1a, 
with blue lines indicating potentially liquefiable soils and red lines 
highlighting the range of highest liquefaction susceptibility for sandy 
soil [43]. Jumunjin sand has a mean particle size (D50) of 0.52 mm and is 
classified as poorly graded sand (SP), meeting the criteria for liquefiable 
sands. A microscopic image and basic soil properties of Jumunjin sand, 
is provided in Fig. 1b.

2.1.2. Biopolymers
This study utilized three polysaccharide biopolymers (XG, CrXG, and 

GG) categorized into two types: rigid gel and viscous gel. CrXG and GG 
were classified as rigid gel-type biopolymers, while XG served as a 
viscous biopolymer.

XG, an anionic polysaccharide, is widely applied across industries 
due to its versatility. Its carboxylate side chains (–COOH) enhance water 
affinity, resulting in increased viscosity and swelling upon dissolution 
[44]. These properties enable XG to form a viscous hydrogel, making it 
effective as soil thickener [45]. Previous studies have highlighted XG’s 
potential as a soil stabilizer, improving dry compressive and shear 
strengths [25,46,47], reducing hydraulic conductivity [48], and 
increasing erosion resistance [49,50]. For this study, analytical-grade 
XG powder from Xanthomonas campestris (Sigma-Aldrich, CAS: 
11138-66-2) was used.

CrXG, a crosslinked form of XG with Cr3+ cations, was synthesized 
using chromium nitrate nonahydrate (Cr(NO3)3⋅9H2O, 99 %, Daejung 
Chemical Co.), a highly soluble violet crystal known for its thermody
namic stability and efficient crosslinking [51,52]. Combining Cr3+ so
lutions with XG hydrogel initiates gelation, where Cr3+ ions form 
intermolecular crosslinks with XG’s -COO- groups, resulting in a rigid 
CrXG gel. This transformation enhances geotechnical properties such as 
wet strength, durability, and shear strength in sand [30,31].

GG, representing thermogelation biopolymers, is produced by 
Sphingomonas elodea and is known for its high molecular weight [53]. 
GG hydrates as a viscous liquid at room temperature (25 ◦C), disperses 
upon heating to above 90◦C, and reforms into a rigid hydrogel upon 
cooling, creating a fibrous structure [54]. Research grade low-acyl GG 
powder (Sigma-Aldrich, CAS No: 71010-52-1) was used.

2.2. Experimental programs

2.2.1. Sample preparation
The biopolymer-soil mixtures for the CDSS and RC tests were pre

pared following a multistep process, beginning with hydrogel formation. 
Fig. 2 illustrates the initial and post-gelation states of XG, CrXG, and GG 
hydrogels. XG powder was dissolved in distilled water at a concentration 
of 3.3 % (mb/mw = biopolymer mass-to-water mass ratio) using a lab
oratory mixer. XG hydrogel remains non-gelling and viscous, main
taining a liquid-like consistency unless dehydrated (Fig. 2a). For CrXG 
hydrogel synthesis, XG hydrogel was blended with an aqueous Cr3+

solution prepared with Cr(NO3)3•9H2O and NaCl in distilled water, 
maintaining an mb/mw of 3.3 %. The final mass ratio of XG, Cr 
(NO3)3•9H2O, and NaCl by mass was set at 10:3:1, based on an optimal 
mix for wet strength enhancement in sand [31]. Initially, CrXG hydrogel 
shares a viscous liquid-like state, similar to XG hydrogel alone, but 
transitions into a rigid gel state due to gradual crosslinking (Fig. 2b). For 
GG hydrogel preparation, GG powder was dissolved in distilled water 
heated to 110 ◦C with a mb/mw of 5 % following previous methods [27]. 
GG forms a viscous liquid after heating but undergoes thermogelation 
upon cooling to room temperature (25 ◦C), forming a rigid gel (Fig. 2c) 
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[27].
After hydrogel preparation, oven-dried sand (heated to 110 ◦C for 24 

h) was thoroughly mixed with each hydrogel to achieve an initial water 
content (water mass in hydrogel-to-soil mass ratio) of 20 % and 
biopolymer content (biopolymer mass-to-soil mass ratio) of 1 %, 
ensuring mixing workability based on previous studies [25,30,54,55]. 
The mixture was tamped into cylindrical molds for each test, with CDSS 
specimens measuring 63.5 mm in diameter and 10 mm in height, and RC 
specimens measuring 50 mm in diameter and 100 mm in height. Control 
over initial dry densities ensured compactness, with all soil specimens 
(untreated and biopolymer-treated) within a range of 1480 ± 30 kN/m³, 
indicating medium compaction. Untreated and XG-treated specimens 
were tested immediately after installation. CrXG-treated specimens were 
pre-cured in molds for 48 h to achieve gelation [30,56], while 
GG-treated specimens were cooled to room temperature to induce 
thermogelation [27]. Specimens were sealed to prevent evaporation and 
maintain water content during the pre-curing.

2.2.2. Cyclic direct simple shear test
Undrained CDSS tests under stress-controlled conditions were con

ducted using a Shear Trac-II (Geocomp, USA) to investigate the cyclic 
loading response and liquefaction resistance of untreated and 
biopolymer-treated specimens (Fig. 3a). Each specimen, measuring 63.5 
mm in diameter and 20 mm in height, were positioned in a shear box 
with a membrane, while Teflon rings providing lateral confinement to 

ensure zero-horizontal extension. The test was performed under con
stant volume control with vertical confining pressures (σvc) of 50 and 
100 kPa, where vertical loading was adjusted to maintain a constant 
sample height, thereby simulating undrained conditions [57]. A 
two-way sinusoidal shear load was applied at a frequency of 0.1 Hz, with 
the cyclic stress ratio (CSR) varying from 0.05 to 0.8 depending on the 
specimen type, reaching a maximum shear strain of 10 % in double 
amplitude. Excess pore pressure (Δu) was inferred from changes in 
effective vertical stress (σ′v) as cyclic shear stress (τcyc) was applied [57,
58]. Liquefaction was defined as occurring when either (1) shear strain 
exceed 7.5 % double amplitude (DA) shear strain threshold (equivalent 
to 5 % double amplitude axial strain in a cyclic triaxial tests) or (2) Δu 
reached the initial σvc level, indicating a significant reduction in σ′v 
[59–61].

2.2.3. Resonant column test
RC tests were conducted using the GTS25 apparatus (GEOTM, Korea) 

to assess the dynamic properties of biopolymer-treated soil within the 
small-to-medium γ level (10− 4 < γ < 10− 2) (Fig. 3b). The specimens size 
measures 50 mm in diameter and 100 mm in height. Torsional shear 
loading was applied under fixed-free RC conditions at confining pres
sures of 100, 200, and 400 kPa. Sinusoidal torsional excitation was 
delivered to the specimen’s top, with torque and rotational responses 
measured using an accelerometer and proximeter. The driving torque 
magnitude was progressively increased in successive sweeps within the 

Fig. 1. (a) Particle size distribution, and (b) microscopic image of host soil. Liquefaction susceptibility criteria is referred from Díaz-Rodríguez et al. (2008).

Fig. 2. State of biopolymer hydrogels at initial and post-gelation state.
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target γ range, from 10− 4 to 10− 2. Shear wave velocity and shear 
modulus (G) were computed based on the moment of inertia ratio be
tween the driving system and the soil specimens, while the damping 
ratio was derived from the free vibration attenuation curve [62,63].

3. Results and analysis

3.1. Effect of biopolymer treatment on undrained cyclic simple shear 
responses

The effectiveness of biopolymer treatment in enhancing undrained 
cyclic resistance was assessed by comparing the cyclic shear responses of 
untreated and biopolymer-treated specimens under stress-controlled 
conditions. A summary of the CDSS test results is provided in Table 1.

The representative undrained cyclic shear responses of untreated 
sand at σvc = 100 kPa and CSR = 0.06 are shown in Fig. 4. The cyclic 
simple shear behavior of untreated sand aligns with trends reported in 
previous studies on poorly-graded sand subjected to CDSS tests [60,64]. 
As the number of cycles (N) increased, axial strain accumulated gradu
ally, reaching a peak-to-peak strain of 7.5 % DA after 32 loading cycles, 
at which point liquefaction was observed (Fig. 4a). The pronounced 
lateral deformation associated with liquefaction is evident in the τcyc – γ 
relationship (Fig. 4b). During cyclic loading, shearing caused a pro
gressive reduction in σ′v. In CDSS tests, where Δu is determined from σvc 
− σ′v, Δu was observed to increase with N, approaching 100 % around 

the 32nd cycle, confirming the occurrence of liquefaction.
Fig. 5 compares the cyclic simple shear responses of untreated, XG-, 

GG-, and CrXG-treated soil under σvc = 100 kPa and CSR = 0.10, high
lighting the impact of biopolymer treatment. The shear strain responses 
with N revealed significant deformation in the untreated and XG-treated 
soils within the first 10 cycles. In untreated sand, the peak-to-peak strain 
reached 7.5 % DA at N = 8, while in XG-treated sand, it reached 7.5 % at 
N = 3, satisfying one of the liquefaction criteria (Fig. 5a and b). GG- and 
CrXG-treated soils also exhibit slight strain at the initiation of loading, 
attributed to the stretchable properties of the rigid gel [65]. However, 
unlike XG-treated and untreated soils, where shear strain continues to 
accumulate, GG-treated (6.1 %) and CrXG-treated soils (2.4 %) maintain 
strain levels within the 7.5 % DA condition even after 100 cycles (Fig. 5c 
and d). This reduced deformation in GG- and CrXG-treated soil aligns 
with the cyclic stress-strain curve (Fig. 5e–h), which demonstrate 
increasing γ with cycles in untreated and XG-treated soils, whereas the 
hysteresis loop remained stable within the DA shear strain criteria for 
GG- and CrXG-treated soil. The cyclic stress path during loading 

Fig. 3. Experimental testing setups: (a) cyclic direct simple shear test; (b) 
resonant column test.

Table 1 
Results of CDSS tests.

Test 
No.

Sample σvc 

[kPa]
CSR NL CRR-NL 

relationship
CRR10

U1 Untreated 50 0.10 19 0.320 • (NL)− 0.333 0.148
U2 ​ ​ 0.15 17 ​ ​
U3 ​ ​ 0.18 5 ​ ​
U4 ​ ​ 0.20 5 ​ ​
U5 ​ ​ 0.22 3 ​ ​
U6 ​ ​ 0.25 2 ​ ​
U7 ​ 100 0.05 104 0.162 • (NL)− 0.264 0.088
U8 ​ ​ 0.06 32 ​ ​
U9 ​ ​ 0.07 21 ​ ​
U10 ​ ​ 0.10 8 ​ ​
U11 ​ ​ 0.12 3 ​ ​
X1 XG 1 % 50 0.08 16 0.146 • (NL)− 0.191 0.094
X2 ​ ​ 0.09 21 ​ ​
X3 ​ ​ 0.10 5 ​ ​
X4 ​ ​ 0.13 2 ​ ​
X5 ​ ​ 0.15 1 ​ ​
X6 ​ 100 0.06 111 0.113 • (NL)− 0.114 0.087
X7 ​ ​ 0.07 74 ​ ​
X8 ​ ​ 0.08 14 ​ ​
X9 ​ ​ 0.09 3 ​ ​
X10 ​ ​ 0.10 3 ​ ​
X11 ​ ​ 0.12 1 ​ ​
G1 GG 1 % 50 0.30 26 0.459 • (NL)− 0.128 0.341
G2 ​ ​ 0.33 12 ​ ​
G3 ​ ​ 0.35 8 ​ ​
G4 ​ ​ 0.40 4 ​ ​
G5 ​ ​ 0.45 1 ​ ​
G6 ​ 100 0.10 N/ 

A
0.456 • (NL)− 0.149 0.324

G7 ​ ​ 0.25 59 ​ ​
G8 ​ ​ 0.30 41 ​ ​
G9 ​ ​ 0.33 13 ​ ​
G10 ​ ​ 0.35 6 ​ ​
G11 ​ ​ 0.40 5 ​ ​
G12 ​ ​ 0.41 3 ​ ​
G13 ​ ​ 0.43 1 ​ ​
C1 CrXG 1 % 50 0.70 60 0.804 • (NL)− 0.029 0.752
C2 ​ ​ 0.73 51 ​ ​
C3 ​ ​ 0.75 10 ​ ​
C4 ​ ​ 0.77 6 ​ ​
C5 ​ ​ 0.80 1 ​ ​
C6 ​ 100 0.10 N/ 

A
0.746 • (NL)− 0.036 0.687

C7 ​ ​ 0.63 101 ​ ​
C8 ​ ​ 0.65 44 ​ ​
C9 ​ ​ 0.67 30 ​ ​
C10 ​ ​ 0.68 10 ​ ​
C11 ​ ​ 0.70 5 ​ ​
C12 ​ ​ 0.75 1 ​ ​

Note: N/A = not available, indicating that the test was manually terminated 
because of the negligible deformation of the sample even after 100 cycles.
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(Fig. 5i–l) indicated a gradual reduction in σvc with increasing cycles, 
reflecting the development of Δu. According to the liquefaction initia
tion criteria where the Δu/σvc ratio reaches 0.95 [66], liquefaction was 
confirmed in untreated sand (Fig. 5m). In XG-treated soil (Fig. 5n), Δu 
increased to 56 kPa at N = 1, and the test were terminated with Δu = 79 
kPa at N = 3 without reaching the Δu/σvc threshold of 0.95. The smaller 
Δu observed in XG-treated sand can likely be attributed to its low hy
draulic conductivity due to the high water absorption capacity and 
pore-filling effect of viscous XG hydrogel [67]. In contrast, GG and 
CrXG-treated soil exhibited moderate Δu increments up to N = 10, but 
did not exceed liquefaction thresholds even at N = 100. This suggests 
that the rigid gel-type biopolymer hydrogels in GG- and CrXG-treated 
soils prevented liquefaction by delaying pore pressure buildup and 
minimizing lateral deformation under cyclic loading conditions.

3.2. Cyclic resistance ratio and liquefaction resistance of biopolymer- 
treated soil

The cyclic resistance ratio (CRR) is commonly used to normalize 
irregular cyclic loading data into an equivalent number of uniform 
loading cycles [68]. It is defined as the CSR required to induce lique
faction in a specific number of cycles (NL) [69]. The relationship be
tween CRR vs. NL is typically modeled using a power law: 

CRR = a • NL
-b (1) 

where the parameters a and b are derived through regression analysis. 
The parameter a represents the CSR corresponding to a single loading 
cycle (NL = 1), reflecting the liquefaction resistance of the soil [70,71]. 
The exponent b indicates the rate of degradation in soil strength or 
stiffness with increasing cyclic shear strain during loading [72]. In this 
study, the CRR at NL = 10 (CRR10) was used to compare liquefaction 
resistances of the soil specimens. This corresponds to an earthquake 
magnitude of 7, as per the Korean design standard for liquefaction 
evaluation [73]. The regression parameters for the fitted CSR-NL 

relationship and the CRR10 values are summarized in Table 1.
Fig. 6 presents the CSR− NL relationship curves for untreated and 

biopolymer-treated soils under σvc of 50 and 100 kPa. The results indi
cate that higher CSR levels result in liquefaction occurring after fewer 
loading cycles, whereas lower CSR levels require more loading cycles to 
induce liquefaction. Across all cases, XG-treated soil, which incorporates 
a non-gelling viscous biopolymer, shows a lower CSR for liquefaction at 
a given number of cycles compared to untreated soil. In contrast, GG- 
and CrXG-treated soils, which utilize rigid gel-forming biopolymers, 
exhibit significantly higher CSR values at the same NL, indicating 
improved resistance to cyclic shear loading. At σvc = 50 kPa, the CRR10 
value for XG-treated soil is 0.094, a 37 % reduction compared to un
treated soil (CRR10 = 0.148). Conversely, GG and CrXG-treated soils 
show CRR10 values of 0.341 and 0.751, representing increases of 130 % 
and 407 %, respectively. At σvc = 100 kPa, the CRR10 value for un
treated, XG-, GG- and CrXG-treated soils are 0.088, 0.087, 0.324, and 
0.687, respectively. These findings demonstrate that biopolymer treat
ments, particularly those utilizing rigid gel-type biopolymers, signifi
cantly enhance liquefaction resistance. In contrast, the XG treatment, 
which employs a viscous non-gelling biopolymer, provide no substantial 
improvement in liquefaction resistance relative to untreated soil. This 
lack of effectiveness is attributed to the absence of structural rein
forcement and stiff interparticle bonding in XG-treated sand [47]. The 
observed trend of increasing CRR values with decreasing confinement 
pressure aligns with the results of previous studies [43,47,60].

3.3. Effect of biopolymer treatment on dynamic properties of soil

The impact of biopolymer treatment on dynamic shear modulus (G) 
and damping ratio was evaluated using resonant column tests, with γ 
increasing across small-to-medium strain ranges. The relationships be
tween G and γ for untreated and biopolymer-treated soils are shown in 
Fig. 7. At higher confining pressures, the G exhibits greater values. XG- 
treated sand showed lower G values compared to untreated sand, 

Fig. 4. Undrained cyclic shear responses of untreated sand at σvc = 100 kPa and CSR = 0.06. (a) shear strain responses, (b) shear stress-strain curves, (c) cyclic stress 
paths, and (d) excess pore pressure responses.
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whereas GG- and CrXG-treated sands demonstrated higher G values at 
same strain level. The contrasting trend observed for XG-treated sand 
aligns with the results of CDSS tests, highlighting the influence of the 
viscous hydrogel state. In untreated and XG-treated sands, G decreases 
significantly with increasing strain, particularly below 10− 3. 
Conversely, GG- and CrXG-treated sands exhibit more gradual re
ductions in G, indicating their ability to maintain soil structure and 
stiffness under excitation. This suggests that while XG treatment fails to 
effectively control deformation, rigid gel-type biopolymers enhance 
structural stability.

The relationships of G and damping ratio with strain were fitted 
using the Ramberg-Osgood model (Eq. (2)) [74,75], and Darendeli 
model (Eq. (3)) [76], respectively: 

γ=
(

G
Gmax

)

γ + c
(

G
Gmax

γ
)d

(2) 

D=Dmin +
k (γ/γr)

1 + (γ/γr)
(3) 

where G is the shear modulus; Gmax is the maximum shear modulus; a 
and b are fitting parameters for the modulus curve; D is the damping 
ratio, Dmin is the minimum damping ratio, and k is a fitting coefficient, 
and γr is the reference shear strain at G/Gmax = 0.5.

Fig. 8a illustrates G/Gmax relationships, with Gmax values for each 
confining pressure summarized in Table 2. GG- and CrXG-treated soils 
exhibited significantly higher Gmax values compared to untreated soil, 
with increases of 74 % and 36 %, respectively, at confining pressure of 
100 kPa. In contrast, XG-treated soils showed reductions in Gmax ranging 
from 4 % to 29 %, indicating that non-gelling viscous hydrogel reduced 
the interlocking effect by resisting compaction under confining condi
tions compared to untreated sand [77,78]. Conversely, the rigid 
gel-bound structure in GG- and CrXG-treated soils enhanced stiffness, 

Fig. 5. Cyclic shear responses of untreated and biopolymer-treated soil sheared at CSR = 0.10 under σvc = 100 kPa: (a–d) shear strain responses, (e–h) shear stress- 
strain curves, (i–l) cyclic stress paths, and (m–p) excess pore pressure responses.
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even under high confinement.
The G/Gmax curves revealed a progressive stiffness degradation with 

increasing γ, which can be characterized by three key strain thresholds 
[79]. The linear threshold strain (γtl) occurs at G/Gmax = 0.99, indicating 
minor fabric changes and no significant pore pressure accumulation 
during cyclic loading. The volumetric threshold strain (γtv) is observed 
at G/Gmax = 0.8, marking the transition between fully recoverable small 
strain regime and medium strain regime with minor strength degrada
tion. Finally, the degradation threshold strain (γtd) is identified at 
G/Gmax = 0.6, where rapid shear modulus reduction begins.

Table 3 summarizes the threshold strain values for untreated and 
biopolymer-treated soils. Untreated and XG-treated soils displayed 
faster stiffness degradation at strain levels below 10− 3. In contrast, 
CrXG- and GG-treated soils exhibited delayed degradation, initiating 
between 10− 3 and 10− 2, which is approximately four times larger than 

that of untreated or XG-treated soils. The similar stiffness degradation 
patterns in CrXG- and GG-treated soils highlight the role of rigid gels in 
enhancing dynamic resistance. This delayed degradation can be attrib
uted to increased ductility, the cementation effects of stiff gels, and the 
hydrogel pore-filling, which effectively prevented excessive pore pres
sure buildup during loading (Fig. 5o and p).

In the small-strain regime, the damping ratio levels showed minimal 
variation across soil types but consistently increased with γ for all tested 
soils (Fig. 8b). However, CrXG- and GG-treated soils demonstrated 
smaller amplitudes and slower rates of increase in damping ratio 

Fig. 6. CSR versus NL of untreated and biopolymer-treated soils: (a) σvc = 50 kPa; (b) σvc = 100 kPa.

Fig. 7. Variation of dynamic shear modulus of biopolymer-treated soils across 
shear strains and confining pressures.

Fig. 8. (a) G/Gmax - γ curve, and (b) damping ratio - γ curve for untreated and biopolymer-treated soil.

Table 2 
Dynamic shear modulus (Gmax) of untreated- and biopolymer-treated soil.

Confining pressure [kPa] Dynamic shear modulus, Gmax [MPa]

Untreated XG 1 % GG 1 % CrXG 1 %

100 33.1 31.8 57.7 45.1
200 39.8 38.1 86.4 81.1
400 44.3 31.5 138.4 129.6

Table 3 
Comparison of threshold strain of untreated- and biopolymer-treated soil.

Biopolymer treatment Untreated XG 1 % GG 1 % CrXG 1 
%

Linear threshold strain, γtl (G/ 
Gmax = 0.99)

1.10 ×
10− 4

1.81 ×
10− 4

3.11 ×
10− 4

3.05 ×
10− 4

Volumetric threshold strain, γtv 

(G/Gmax = 0.80)
1.59 ×
10− 3

2.00 ×
10− 3

1.63 ×
10− 2

1.22 ×
10− 2

Degradation threshold strain, 
γtd (G/Gmax = 0.60)

4.49 ×
10− 3

5.21 ×
10− 3

6.80 ×
10− 2

4.69 ×
10− 2
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compared to untreated and XG-treated soils. This behavior indicates less 
energy dissipation in CrXG- and GG-treated soils, coupled with their 
enhanced ability to maintain structural integrity under large 
displacements.

4. Discussions

4.1. Role of different biopolymer hydrogels in sand under seismic loading

When seismic loads are applied to saturated, loosely packed soils, 
shear strength is rapidly lost due to excess pore water pressure buildup, 
resulting in liquefaction. Experimental results highlight distinct influ
ence of biopolymer hydrogels, depending on their state, on soil resis
tance to shear deformation under seismic loading. This section discusses 
the role of biopolymer hydrogel in the soil matrix during seismic loading 
based on their state. Fig. 9 presents a schematic figure illustrating the 
effects of biopolymer hydrogels in sand: non-gelling viscous type and 
gelation type, supported by environmental scanning electron micro
scope (ESEM, Quattro S, Thermo Fisher Scientific Inc.) images of XG- 
and CrXG-treated sand specimens captured under humid conditions.

The behavior of sand under cyclic loading is influenced by the 
interaction between the soil skeleton and the pore fluid. Energy dissi
pation occurs through skeleton damping from particle rearrangement at 
grain contacts and viscous damping from pore fluid-solid particle in
teractions [80]. The viscous XG hydrogel aids in energy dissipation 
through internal friction and viscous drag as seismic waves pass 
through, functioning as a viscous damper and slightly enhancing 
damping ratios at small-strain levels [81,82]. Additionally, the high 
yield stress and water-absorptive properties of XG hydrogel restrict 
water movement through pore-filling, alleviating pore pressure buildup 
by restricting water movement through pore-filling. Nevertheless, its 
minimal tensile strength in hydrated state and shear-thinning behavior 
limit its structural reinforcement within soil matrix [83]. These prop
erties create a lubricating effect, reducing interparticle friction and 
shear resistance under large-strain cyclic loading. Consequently, 
XG-treated sand is more prone to deformation under cyclic loading, as 
evidenced by its decreased CRR10 value compared to untreated sand 

under σv = 50 kPa.
In contrast, rigid hydrogels achieved through cation crosslinking or 

thermogelation form mechanical bonds between sand particles, as 
shown in ESEM images. These hydrogels significantly enhance CRR10 
and Gmax. This reinforcement is attributed to the substantial rigidity and 
tensile strength (50–500 kPa) of CrXG and GG hydrogels [83], creating a 
cementation effect that strengthens cohesion and prevents particle 
rearrangement while maintaining effective stress [30,84]. The rigid 
structure of these hydrogels also delays shear stiffness degradation 
within the elastic strain range, as seismic energy dissipation at rigid 
hydrogel-sand interfaces is lower compared to viscous hydrogel-treated 
soils.

These contrasting reinforcement effects of biopolymer hydrogels 
align with findings from unconfined compressive strength (UCS) tests 
[30] (Fig. 10). Under unconfined loading, XG-treated soil exhibits low 
strength (~10 kPa), while GG and CrXG-treated soils (48-h cured) 
demonstrate strengths of 123 and 265 kPa, respectively, paralleling the 
CRR10 improvement trend. The tensile strength deficiency of XG 
hydrogel can potentially be addressed through Cr3+ crosslinking, 
enhancing its applicability for seismic soil stabilization, including 
liquefaction mitigation at shallow depths.

On the other hand, gelation-type biopolymer-treated sands exhibit a 
marked delay in shear stiffness degradation within the elastic strain 
range. This delay minimizes deformations during cyclic loading, effec
tively reducing settlement risks. However, the reduced energy dissipa
tion associated with rigid hydrogels may lead to amplified ground 
accelerations and higher dynamic forces at the surface, as the treated 
soil transmits seismic energy more efficiently without sufficient damp
ing. This trade-off between increased stiffness and potential acceleration 
amplification may induce dynamic responses in surface structures, 
potentially causing damages if seismic energy concentrates at specific 
frequencies [85]. Therefore, careful management in seismic stabiliza
tion designs is necessary, and a deeper understanding of soil-structure 
interactions in biopolymer-treated soil layers is essential for assessing 
the implications of rigid gel-type biopolymers in enhancing seismic 
resistance.

Fig. 9. Conceptual schematic and ESEM images of biopolymer hydrogel effects in sand depending on hydrogel state under seismic loading.
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4.2. Comparison of liquefaction resistance improvement efficiency with 
other soil stabilizers

Fig. 11 presents a comparative analysis of CRR10 values at σvc = 100 
kPa, highlighting the liquefaction resistance improvement efficiency of 
CrXG biopolymer treatment alongside conventional soil stabilization 
using agar gum [39], microbially-induced calcite precipitation (MICP) 
[86], silica grout [43], cement paste [71], and silica sol [87]. The 
hatched region in figure denotes the CRR10 value of each untreated 
sandy soil. Results indicate that CrXG treatment efficiently enhances 
liquefaction resistance, achieving levels comparable to microbial and 
chemical grout cementation methods. Notably, CrXG demonstrated 
competitive improvement efficiency compared to cement paste, under
scoring its potential as a sustainable alternative that addresses concerns 
related to carbon emissions. Additionally, CrXG treatment achieved 
higher improvement efficiency compared to GG and agar gum treat
ments, which required high-temperature heating. The advantages of the 
CrXG treatment, including its adjustable gelation time and rigidity 
without thermal processing [31], underscore its low energy re
quirements and high feasibility for field applications.

To further quantify the improvement in liquefaction resistance, the 
improvement factor (If) was calculated, defined as the ratio of CRR for 
treated specimens to that of untreated specimens. The formula, as out
lined in Eq. (4), provides a standardized metric for comparing the 
enhancement across different soil stabilization techniques and cyclic 
loading conditions corresponding to earthquake moment magnitudes 
(Mw) [88]: 

If =
CRRT=NL

CRRUT=NL

(4) 

Where CRRT=NL represents the cyclic resistance ratio of biopolymer- 
treated sand, CRRUT=NL corresponds to untreated sand. Fig. 12 pre
sents the relationship between If and Mw for untreated and biopolymer- 
treated soil in comparison with MICP-treated soil at σvc = 100 kPa [86]. 
For earthquakes with Mw values of 6.0, 7.0, and 7.5—corresponding to 
5, 10, and 15 loading cycles, respectively— the XG treatment showed 
minimal changes in If change, reflecting the limited impact of viscous XG 
hydrogel on seismic performance. In contrast, CrXG-treated soil 
demonstrated significant increases in If with Mw, reaching values be
tween 6.7 and 10.3, far exceeding the range of 1.3–1.4 observed for 
MICP treatment. This notable improvement highlights CrXG treatment 
as a competitive liquefaction prevention technique. Its superior If values 
and sustainable attributes position it as a practical alternative for 
enhancing soil stability in seismic zones, offering substantial promise for 
widespread application.

4.3. Implications and limitations

The findings from this study suggest that CrXG biopolymer treatment 
enhances the liquefaction resistance of soils, particularly in shallow soils 
with high groundwater levels. For field applications in shallow layer, 

Fig. 10. Comparison of CRR10 and UCS of biopolymer-treated soil.

Fig. 11. Comparison of CRR10 at σvc = 100 kPa and liquefaction resistance improvement efficiency for bio-based and conventional soil stabilizers. The hatched area 
denotes the CRR10 value associated with each untreated sandy soil.

Fig. 12. Improvement factor of liquefaction resistance against moment 
magnitude of biopolymer-treated and MICP-treated soil.
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permeation grouting method emerges as a feasible technique. However, 
the reinforcing performance is heavily dependent on the gel saturation 
level within soil pore spaces, which is influenced by injection pressure, 
soil properties, and hydrogel’s rheological properties [89–91]. Ensuring 
uniform distribution of the hydrogel within the treated layer is essential 
for sustained effectiveness, highlighting the need for further studies to 
address these practical implementation factors using injection methods.

The biopolymer-treated layer is likely to experience cyclic ground
water fluctuations, altering the moisture state and potentially affecting 
the strength durability of CrXG-treated soil. While CrXG-treated sand 
retains wet strength in immersed conditions, moisture loss can reduce 
particle bonding capacity as the rigid hydrogel transitions into a CrXG 
film, potentially causing shrinkage-induced fissures [86]. Future studies 
should investigate the effects of weathering processes on seismic resis
tance to comprehensively evaluate long-term durability and 
performance.

It should also be noted that this study assessed liquefaction behavior 
in CDSS tests using indirect pore water pressure measurements. To gain 
deeper insights into the pore water pressure generation characteristics in 
liquefiable soils, further investigations incorporating cyclic triaxial tests 
with direct PWP measurements would enhance the robustness and 
applicability of the findings.

5. Conclusion

This study evaluated the feasibility of CrXG biopolymer treatment for 
liquefaction mitigation by examining its effects on the cyclic shear 
loading response and dynamic properties of sand within the small-to- 
medium strain regime. The liquefaction resistance, dynamic shear 
modulus, and damping ratio of CrXG-treated soils were assessed through 
cyclic direct simple shear (CDSS) and resonant column (RC) tests and 
compared with non-gelling viscous XG and thermogelation GG treat
ments to elucidate their distinct reinforcing mechanisms. The key find
ings are summarized as follows: 

1. The CDSS tests demonstrated that CrXG-treated soil significantly 
enhances liquefaction resistance by reducing shear strain accumu
lation and pore pressure development, outperforming untreated and 
XG-treated soils. Under identical vertical confinement and CSR 
conditions, XG-treated soils exhibited rapid deformation and lower 
CRR10 compared to untreated sand. While XG hydrogel restricted 
water movement through pore-filling, its minimal tensile strength in 
the hydrated state and shear-thinning behavior limited its structural 
reinforcement within the soil matrix, leading to early liquefaction. 
Conversely, rigid-gel biopolymer-treated soils, such as CrXG and GG, 
exhibited stable structures with substantially higher CRR10 values. 
This improvement is attributed to the mechanical bonds formed by 
the rigid hydrogels, which enhance interparticle cohesion and pre
vent particle rearrangement while maintaining effective stress.

2. RC test results highlighted the dependence of dynamic shear 
modulus and damping ratio on the biopolymer hydrogel state. XG- 
treated soils showed reduced maximum dynamic shear modulus 
and rapid stiffness degradation due to the limited reinforcing ca
pacity of viscous hydrogels. In contrast, GG- and CrXG-treated soils 
exhibited significant improvements in dynamic shear stiffness across 
all confining pressures due to their rigid gel-bound structures. Rigid 
gels also delayed stiffness degradation to higher strain levels, indi
cating superior resistance to dynamic loading but reduced seismic 
energy dissipation. This rigidity minimizes deformations during cy
clic loading, effectively mitigating settlement risks. However, it may 
also amplify ground accelerations and dynamic forces at the surface, 
necessitating further studies on seismic soil-structure interactions in 
biopolymer-treated layer.

3. Comparisons of CRR10 values at σvc = 100 kPa revealed that CrXG 
treatment achieved liquefaction resistance levels comparable to mi
crobial and chemical grout cementation methods while 

demonstrating higher improvement efficiency than thermogelation 
biopolymers that require thermal treatment. Analysis of the 
improvement factor (If) across different earthquake moment mag
nitudes (Mw) showed minimal changes for XG-treated soils, reflect
ing the limited impact of viscous hydrogels on seismic performance. 
In contrast, CrXG-treated soils exhibited significant increases in If 
with Mw, reaching values between 6 and 10. These results highlight 
CrXG’s superior performance and its potential as a sustainable and 
practical solution for enhancing soil stability in seismic zones.

4. For field applications in shallow layers, permeation grouting 
emerges as a feasible technique for implementing CrXG treatment for 
liquefaction mitigation. However, achieving uniform hydrogel dis
tribution within the treated layer requires further investigation into 
practical parameters, including injection pressure, soil properties, 
and hydrogel rheology. Additionally, biopolymer-treated layers are 
likely to experience cyclic groundwater fluctuations, altering their 
moisture state and potentially affecting the durability of CrXG- 
treated soils. Future studies should focus on understanding the ef
fects of weathering processes on seismic resistance to comprehen
sively evaluate long-term performance and durability.
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