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A B S T R A C T

Various applications of biopolymer-based soil treatment (BPST) in geotechnical engineering have been im-
plemented in recent years, including dust control, soil strengthening and erosion control. Despite BPST methods
can ensure the effectiveness of engineering while meeting environmental protection requirements, BPST tech-
nology requires further validation in terms of site applicability, durability, and economic feasibility. This study
aims to provide a state-of-the-art review and future prospective of BPST. Current biopolymer types, engineered
and assessed in laboratory scales, are described along with site implementation attempts. The effect of biopo-
lymers on soil behavior is reviewed with regard to geotechnical engineering application and practice, including
soil consistency limits, strength parameters, hydraulic conductivity, soil-water characteristics, and erosion
control. The economic feasibility and sustainability of BPST application in ground improvement and earth
stabilization practices is discussed. This review postulates biopolymers to be a promising new, environmentally
friendly ground improvement material for geotechnical and construction engineering practice.

Introduction

Rapid global population growth has increased socioeconomic de-
mand for the development and expansion of civil infrastructure at an
unprecedented rate. The construction of civil infrastructure requires
corresponding ground improvement practices; more than 40,000 soil
improvement projects are implemented at a total cost exceeding 6 bil-
lion USD per year worldwide [1]. The main purpose of ground im-
provement is to increase the strength (bearing capacity and shear
strength) and stiffness of soil, improve surface erosion resistance, and
control hydraulic conductivity and seepage [2]. Generally, soil im-
provement techniques can be classified into two main categories: me-
chanical stabilization (e.g., compaction, vibration, anchors, geosyn-
thetics) and chemical stabilization (e.g., mixing or injection of
cementitious binders) [3].

Ground improvement using chemical stabilization is based on in-
ducing chemical reactions of cementitious binders in the pore space of
soil or with soil minerals to achieve a desired strengthening effect by
improving interparticle bonds and clogging pores [2,3]. Cement, lime,
fly ash, and hydrophilic gels are all commonly used for this purpose.

However, there are serious concerns about the chemical impact (e.g.,
toxicity and leaching) that these conventional soil binders have on the
natural environment as well as their effects on the health and safety of
humans [4]. Cement has been the most common material used for
ground improvement since the 1960 s [5,6]. However, its use in satu-
rated ground could increase the pH of the soil and neighboring
groundwater [7]. Moreover, it contributes to global climate change, as
0.2% of global CO2 emissions is linked to cement usage in geotechnical
engineering practices [7]. The cement industry accounts for 5–8% of
global CO2 emissions [7–9], as producing a single ton of cement emits
approximately 1 ton of CO2 [10]. The production of cement is expected
to grow from 2.5 billion tons in 2016 to 4.4 billion tons by 2050 [11].
For these reasons, significant research has been undertaken to develop
new types of binders in an effort to reduce the use of cement in ground
improvement practices.

Polyacrylamide (PAM) has been introduced as a soil conditioner to
increase water retention in soil under drought conditions, to improve
soil erosion resistance during irrigation [12,13], and to reduce wind
erosion and dust at construction sites [14] and temporarily unpaved
field facilities [15]. However, previous studies have shown that the

https://doi.org/10.1016/j.trgeo.2020.100385
Received 16 February 2020; Received in revised form 4 June 2020; Accepted 4 June 2020

⁎ Corresponding author.
E-mail addresses: ilhan.chang@unsw.edu.au (I. Chang), minhyeong@kaist.ac.kr (M. Lee), ttphuongan@hueuni.edu.vn (A.T.P. Tran),

sojeong.lee@student.unsw.edu.au (S. Lee), yeongman.kwon@kaist.ac.kr (Y.-M. Kwon), jooyoungim@kaist.ac.kr (J. Im), gyechun@kaist.edu (G.-C. Cho).

Transportation Geotechnics 24 (2020) 100385

Available online 10 June 2020
2214-3912/ © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/22143912
https://www.elsevier.com/locate/trgeo
https://doi.org/10.1016/j.trgeo.2020.100385
https://doi.org/10.1016/j.trgeo.2020.100385
mailto:ilhan.chang@unsw.edu.au
mailto:minhyeong@kaist.ac.kr
mailto:ttphuongan@hueuni.edu.vn
mailto:sojeong.lee@student.unsw.edu.au
mailto:yeongman.kwon@kaist.ac.kr
mailto:jooyoungim@kaist.ac.kr
mailto:gyechun@kaist.edu
https://doi.org/10.1016/j.trgeo.2020.100385
http://crossmark.crossref.org/dialog/?doi=10.1016/j.trgeo.2020.100385&domain=pdf


residual monomers of PAM generate toxicities [16] that can impact the
nervous system [17,18] and brain creatine kinase [19], damage DNA
[20], and increase cancer risks [16,21–23].

To overcome the concerns and drawbacks of common soil chemical
stabilization practices, bio-mediated and bio-inspired approaches have
been actively studied in geotechnical engineering research. Microbial-
induced calcite precipitation (MICP) is a technique that utilizes the
metabolic pathways of bacteria such as Sporosarcina pasteurii (i.e.,
Bacillus pasteurii) [24–30] and Pseudomonas denitrificans [31] to form
calcite precipitations throughout the soil matrix. Precipitated calcium
carbonate (CaCO3) binds soil particles together, thereby increasing the
strength and stiffness of the soil and reducing its hydraulic conductivity
[32–34]. However, despite numerous studies, the MICP method still has
several limitations: (1) it mostly has insufficient performance in fine
soils with small pores, especially stiff clays [35]; (2) the transport,
cultivation, and fixation performance of bacteria is not consistent [36];
(3) the ammonium chloride byproduct dissolves soil minerals [37]; and
(4) difficulties with field performance prediction and ensuring appro-
priate design where CaCO3 precipitation behavior differs from in situ
chemical conditions and the presence of natural bacteria and organic
substances [38].

Recently, various avenues have been pursued to use biopolymers in
geotechnical engineering [7,39–42]. Biopolymers are polymers pro-
duced from natural resources, including polysaccharides such as cel-
lulose, proteins such as gelatin, casein, and silk, and marine prokar-
yotes; chemical synthesis of bio-derived monomers (e.g., polylactic
acid) or microbial activities (e.g., xanthan gum, gellan gum) can also
produce biopolymers [7,43]. Biopolymers are environmentally friendly
and have been widely used in food and medical applications [44,45].
Recent studies have shown how biopolymers can be used for soil
strengthening [46–51], soil permeability control [52–54], erosion re-
duction [55–60], dust control [61–64], and even water treatment
[65–68].

Biopolymer-based soil treatment (BPST) has advantages in terms of
rapidity and quantity/quality control over other biological soil treat-
ment methods. In particular, endo-cultivating MICP requires abundant
time and resources (e.g., nutrients, aeration, cultivation environment
control) to ensure sufficient CaCO3 precipitation for soil strengthening,
with the exact quantity of CaCO3 being largely unpredictable and case-
dependent [1,7,38,69]. However, the basic concept of BPST involves
using biopolymers produced from an exo-cultivation facility, where
both quantity and quality control are available. Moreover, direct bio-
polymer mixing with soil forms uniform biopolymer-treated soil (BPTS)
mixtures that show instant strengthening due to the electro-static bio-
polymer-soil matrix formation [7,46,50,70] (Fig. 1).

This study aims to provide a state-of-the-art overview and future
direction of BPST. Current biopolymer types, engineered and assessed
in laboratory-scale studies, are described along with site application
attempts. The effect of biopolymers on soil behavior is reviewed with
regard to bio-geotechnical engineering application and practice.
Furthermore, the application of biopolymers in slope erosion control is
thoroughly examined. Finally, the environmental, social, and economic
aspects of biopolymer use are discussed.

Common biopolymers used in geotechnical engineering

Common biopolymers used in geotechnical engineering research
and practices are summarized in Table 1. Their detailed chemical
characteristics and application forms are described in the following.

Agar gum

Agar gum is a polysaccharide biopolymer composed of linearly
linked galactose molecules based on a disaccharide repeat structure of
3-linked β-D-galactopyranosyl and 4-linked 3,6-anhydro-α-L-galacto-
pyranosyl units [71]. Generally, agar gum is extracted from several

species of Rhodophyta (red algae), including Gelidium, Gracilaria, and
Pterocladia [72]. The most important property of agar is its ability to
form reversible gels through cooling heated aqueous solutions without
additional chemical treatment [72]. Agar molecules form double he-
lices with a threefold screw axis, where agar gelation is followed by the
settling of water molecules into the cavities between the double helices
of agar, contributing to the stability of the double helix [73].

Agar gum is commonly used as a gel thickening agent and food
stabilizer [72]. In addition, agar gum has various medical purposes,
such as use in medications [74,75] and in culture media for microbial
and genetic research [76,77].

As agar gum has rheological properties, it has recently been used to
improve the strength of soil without environmental concerns [48,78].
The results from previous studies show that an agar gum treatment of
3% (of the dry mass of the soil) increases the unconfined compressive
strength (UCS) of the soil by up to 10 MPa in dry conditions [48]. The
effectiveness of agar gum in strengthening soil is likely related to the
dehydration of agar gum gels [48,78]. Moreover, adding starch to agar
gum results in a significant increase in the inter-particle cohesion and
stiffness of soils [79]. However, the addition of sodium alginate to agar
gum seems to decrease the strength of agar gum-treated soil [80].

Guar gum

Guar gum is a neutrally charged polysaccharide extracted from the
seeds of the leguminous shrub Cyamopsis tetragonoloba. Guar gum be-
longs to the galactomannan family. Its structure consists of a 1,4-linked
β-D-mannopyranose backbone with random branch points of α-D-ga-
lactose units [81]. The most significant characteristic of guar gum is its
ability to hydrate rapidly in cold water systems, yielding highly viscous
solutions even at low concentrations [44]. At the same biopolymer-to-
water ratio, guar gum solution shows higher viscosity than xanthan
gum solution [82]. Concentration, dispersion, temperature, pH, and
presence of additional substances are the main factors affecting the
rheology of guar gum solutions [83]. An uncontrolled rate of hydration
can lead to a decrease in viscosity, which can limit the applications of
guar gum. Thus, the hydration process of guar gum must be controlled
for at least 2 h in practical applications in order to reach maximum
viscosity [44].

Since its introduction as a substitute for locust bean gum in 1942
[83], guar gum has been widely used in food products as a stabilizer,
emulsifier, or thickener. As a food additive, it is used in an amount
smaller than 1% of the food weight [44,84]. In industrial applications,
guar gum is used as a flocculant, foam stabilizer, filtration aid, water
treatment agent, and additive for pharmaceutical drugs [85–88].

In civil and geotechnical engineering practices, guar gum has been
tried to stabilize mine tailings by improving their undrained shear
strength by about 11 times (2 kPa to 22 kPa at 30% water content) [82].
Attempts have been made to use viscosity-controlled guar gum (with
additives such as acrylamide, ammonium persulfate ((NH4)2S2O8), and
formaldehyde (CH2O)) as injected grout for sand stabilization to sup-
port construction work in desert areas [89]. Guar gum can be used to
stabilize desert sand and expansive soils on slopes to mitigate cracking
at shallow depths [90,91]. Moreover, it has been reported that guar
gum slurry can be used for vertical barrier wall (e.g., cut-off wall)
construction [92,93].

However, microorganisms or enzymes can cause guar gum slurry to
decompose naturally into simple sugars and water, which have a
minimal impact on the environment [93]. Thus, durability becomes an
important concern using guar gum biopolymer in geotechnical en-
gineering practices.

Gellan gum

Gellan gum, manufactured by microbial fermentation of
Sphingomonas elodea, is a linear anionic polysaccharide composed of a
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repeating chain of two D-glucose residues, one D-glucuronic acid, and
one L-rhamnose residue, with a multi-stranded chain structure [94,95].

Gellan gum forms a viscoelastic aqueous solution with cation-de-
pendent gelation behavior [96]. It features versatile conformation ac-
cording to polymer concentration, temperature, aqueous environment,
and the presence of monovalent or divalent cations in the solution [97].
At low temperatures, gellan gum mostly exists in the form of double
helical strands, while it shows single helix strands at high temperatures
[94].

The temperature-dependent structure and viscosity transforming
characteristics (i.e., thermo-gelation) of gellan gum have advantages in
geotechnical engineering [48]. Once gellan gum hydrogels are formed
via thermo-gelation between soil particles, the firm hydrogels provide

significant strengthening (e.g., about 400 kPa with SP sand and 12 MPa
withML soil in dry conditions) and pore-clogging effects to cohesionless
soils [48]. Moreover, the strengthening effect of gellan gum treatment
excels in the presence of clays due to the direct formation of a biopo-
lymer-clay matrix [46]. Compared to other polysaccharide-type bio-
polymers, gellan gum shows higher durability against severe wetting-
and-drying cycles, which is a notable benefit in practice [98]. However,
the economic feasibility of gellan gum itself and the heat treatment
required to induce the thermo-gelation process are limitations to its
adoption in real geotechnical engineering practice.

Fig. 1. Schematic comparison between microbial induced calcite precipitation (MICP) and biopolymer-based soil treatment (BPST) (SEM images after Al Qabany
et al. [38], Dejong et al. [1], Chang et al. [49], Chang et al. [50], Chang et al. [48]).
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Dextran

Dextran is a homopolysaccharide composed of glucose linked to a
linear chain via α-1,6-linkages, synthesized from sucrose by lactic acid
bacteria such as Leuconostoc mesenteroides and Streptococcus mutans
[99]. It is a flexible biopolymer that can form coils with high density
and a low level of permeability in an aqueous medium [100,101].

Dextran is one of the first industrially utilized extracellular micro-
bial polymers, commonly used as a blood plasma extender [102].
Moreover, dextran is implemented in tissue engineering [103–105].
Another important application is the industrial separation of plasma
protein, in particular albumin, immunoglobulins, pro-insulin, and other
blood factors [106–108]. Dextran is also used in the food industry as an

emulsifier [109].
In civil and construction engineering aspects, attempts have been

made to use dextran as an oil drilling mud additive [110,111] and soil
stabilizer [112]. Dextran is reported to modify the microaggregate size
distribution, increasing the proportion of aggregate (> 75 μm) [112].
Dextran renders effective aggregation of soil particles [113,114]. A
study on the effect of dextran on the desiccation and rehydration of
sand and clays showed that dextran has no effect on water retention in
soils [115]. Recently, experimental studies have shown that dextran
enhances the surface erosion and scouring resistance of saturated silty
sands. Fine silica sand containing dextran produced by 300 g/L of su-
crose concentration showed 20 times increased critical shear stress (τc)
and a 1/9 reduction in the erodibility coefficient (k) compared to the

Table 1
Common biopolymers used in geotechnical engineering.

Biopolymer Chemical characteristics Cost1 [$/kg] Behavior with Soils Reference

Composition Structure Rheology

Agar Gum C14H24O9 • Reversible gelation properties with
heating and cooling

• Thickening agent

10–100
(~250)

• Strengthening

• Pore clogging

• Erosion reduction

[48,72,78,232]

Guar Gum C10H14N5

Na2O12P3
• High viscosity

• Hydration in cold water

• Stabilizer/thickener

1–30
(~160)

• Dust control

• Strengthening

• Grouting

[44,82,84,89,90,232]

Gellan Gum C24H37O20 • Reversible gelation properties with
heating and cooling

• Thickening agent

10–100
(~460)

• Strengthening

• Pore clogging

• Erosion reduction

[46,48,96–98,232]

Dextran C18H32O16 • Flexible biopolymer

• Lowers permeability in aqueous
medium

• Emulsifier

15–60 • Drilling muds

• Conditioners

• Erosion reduction

[56,100,101,109–112,116,232]

Beta-(1–3)-
glucan

C18H32O16 • Irreversible elastic gel when heated

• Used as gelling agent
20–90 • Grouting

• Strengthening

• Superplasticizer in
concrete

[101,102,109,110,128,232,233]

Xanthan Gum C36H58O29P2 • Increased viscosity

• Pseudo-plastic properties
2–5 (~500) • Drilling mud thickener

• Strengthening
[49,137,138,232]

Chitosan C18H35N3O13 • No immune reaction

• Thickener

• Fertilizers

10–100
(~1000)

• Coagulant effects

• Removal of heavy metals
in water

[65,148–151,232]

Starch C27H48O20 • Diverse properties based on source

• Used as thickeners, stabilizers,
disintegrates, diluents, adhesives,
etc.

1–5 (~20) • Adhesives for drilling
fluids

• Strengthening

• Erosion reduction

[79,158–162,232]

Casein C81H125

N22O39P
• Hydro-phobic properties

• Widely used in food, paints,
adhesives, plastics, and medical
practices

5–50 (~80) • Strengthening

• Water resistance

• Hydraulic conductivity
reduction

[166–170,234]

1 Market price (as in 2018) based on bulk units (www.alibaba.com), where prices in brackets present the price of (purified) research grade products according to
www.sigmaaldrich.com.
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untreated condition [56,116].

Beta-glucan

Beta-glucan (β-glucan) comprises a biopolymer group of D-glucose
monomers that typically form a linear structure via 1,3- or 1,6-glyosidic
bonds [50,117]. β-glucan is naturally found in various formations, such
as in cellulose, bran, and the cell walls of yeasts, fungi, and bacteria
[118–120]. In construction and geotechnical engineering practices,
attempts have been made to use various β-glucan types, including
scleroglucan, curdlan, and Polycan, to improve geotechnical en-
gineering properties of soils.

Scleroglucan
Scleroglucan is a natural polysaccharide produced by an aerobic

submerged culture of a selected strain of the fungus Sclerotium rolfsii,
which has a three-dimensional, cross-linked, triple-helix structure
[121]. Scleroglucan has high stability with temperature variation;
however, when heated above 140 °C, its viscosity abruptly reduces
down due to unrecoverable disturbance of its helical structure [122].
Scleroglucan is a multipurpose compound with applications in many
industrial fields, including oil, food, and pharmaceutics. Purified
scleroglucan, from which the mycelium has been removed by filtering
the dilute broth, is used as a thickener in cosmetic applications
[121,122].

Scleroglucan-based drilling fluids have found significant use in
horizontal well drilling, as they allow the extraction of more oil from a
petroleum reservoir [123,124]. Scleroglucan is not as economical as
xanthan, but crude scleroglucan is potentially economical for use in oil
recovery and drilling [125]. In conventional building products, scler-
oglucan shows adequate applicability as a thickener for asphalt emul-
sions [122,126]. Another application of scleroglucan is in improving
the water retention of soils, where the water-holding capacity of
scleroglucan is weaker than that of xanthan gum but higher than dex-
tran [115,127].

Curdlan
Curdlan is a linear β-1,3-glucan biopolymer with a high molecular

weight that is produced by pathogenic bacteria (e.g., Agrobacterium
biovars and Alcaligenes faecalis) [99]. Curdlan forms irreversible elastic
gels upon heating in an aqueous phase; thermally induced curdlan gels

do not dissolve back to aqueous suspensions even when reheated [128].
Curdlan is a commonly used gelling agent in food industry [101,102],
biomedical and pharmaceutical industries [117,129], and cosmetics
industry [130,131].

In civil and geotechnical engineering applications, curdlan has been
investigated to be used as a pore-clogging (grouting) agent for soil
hydraulic conductivity reduction [132] and adsorbent for contaminated
ground treatment [133]. Furthermore, curdlan has been used as a su-
perplasticizer in concrete mixtures to prevent cement-aggregate se-
paration [134].

Polycan
PolycanTM predominantly consists β-1,3/1,6-glucan produced by

Aureobasidium pullulans [50,135]. Attempts have recently been made to
use Polycan as a new, environmentally friendly soil binder in geo-
technical engineering. Polycan has a soil strengthening effect, as even a
small amount (0.25% of the soil mass) enhances the UCS of soil by up to
2.7 MPa which is competitive to the improvement of 10% cement-
treated soil (2.2 MPa), while 0.5% β-1,3/1,6-glucan content yields a
UCS of up to 4.3 MPa [50]. In addition, the presence of Polycan in soil
enhances the liquid limit (LL), plasticity index (PI), and shear stiffness
(G), while having a minor effect on soil’s constraint modulus (M) [136].
Moreover, β-1,3/1,6-glucan soil treatment improves the surface erosion
resistance and vegetation growth of arid soils, postulating the opti-
mistic potential of BPST application to combat desertification [57].

Xanthan gum

Xanthan gum is a polysaccharide biopolymer produced by
Xanthomonas campestris [137], comprising two glucoses, two mannoses,
and one glucuronic acid unit that mostly forms helical structures
[138,139]. Xanthan gum solution conformation is either a helix or
random coil shapes, depending on dissolution temperature and salt
level [140]. The viscosity of xanthan gum solutions increases linearly
with xanthan gum content, showing high stability in broad range of
temperatures, pH, and electrolyte concentrations [49].

Xanthan gum has been commonly used in food industry due to its
temperature stability, compatibility with food ingredients, and pseudo-
plastic rheological characteristics [138]. Moreover, xanthan gum is also
applied as a gelling and suspending agent (flocculant) for viscosity
control in the oil industry as a drilling mud thickener [137]. Recently,

Fig. 2. Biopolymer effect to the liquid limit of soils [70,82,136,173].
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many research are implementing xanthan gum in geotechnical en-
gineering practices due to its high soil strengthening efficiency (e.g.,
4.9 MPa of UCS with 1% treatment on CL soil) and adequate economic
feasibility [47,49,52,55,70,141–147].

Chitosan

Chitosan is a linear polysaccharide formed by the deacetylation of
chitin contained in insects, squid bones, and crustacean shells. The
main components of chitosan are β-1,4-D-glucosamine (C6H13NO5) and
N-acetylglucosamine (C8H15NO6).

As chitosan has a similar molecular structure to human tissue,
chitosan is compatible with the human cells and does not raise concerns
of immune reactions. Thus, chitosan has become a common thickener,
stabilizer, and manufacturing agent for food products and biomaterials.
Due to its biodegradable properties, chitosan is widely used in

agriculture in environmentally friendly biopesticides and fertilizers
[148,149]. In addition, chitosan has been introduced as a feasible
sustainable additive in earthen construction [68].

In terms of civil and environmental engineering, chitosan has been
used as a coagulant to remove contaminants such as Cu2+, P3−, Cd2+,
Zn2+, and Pb2+ from waste water and groundwater [65,150,151].
Moreover, the injection of chitosan into organic waste suspensions
promotes coagulation, accelerating separation (settlement) of organic
matter [66,152,153]. The cationic charges of chitosan show electro-
static interaction with the negative charges of clay particles, forming
coagulates in clay suspensions [41,154,155] and rendering face-to-face
packing clay sediments [156]. For soil remediation, chitosan coats the
surface of sand particles and enhances the filtration of waste removal
via pore clogging, which significantly reduces the hydraulic con-
ductivity of soils [52,157].

Fig. 3. Unconfined compressive strength of biopolymer-treated soils at a dry condition. (a) Coarse soil [48,79,169,175]. (b) Fine soil [50,146,176,177]. Data for
cement-treated soils are included for comparison.
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Starch

Starch is one of the most common natural biopolymers found in
seeds, grains, and roots of plants, including maize, rice, wheat, corn,
potatoes, and cassava. The appearance and properties of this natural
biopolymer vary depending on the source [158]. Starches are mainly
composed of monosaccharides or sugar molecules with α-D-1,4 and/or
α-D-1,6 linkages.

Starches are widely used in various fields including food, textile,
cosmetic, plastic, paper, and pharmaceutical industries, as thickeners
and stabilizers [159], disintegrants and diluents [160], strengtheners
[161], and adhesives [162].

In construction and geotechnical engineering, starches have been
applied as adhesives for drilling fluids [123,124,163]. Additionally,
starch can improve the mechanical properties of soil, including UCS,
shear strength, elastic modulus, and permeability function, as a preg-
elatinized powder [79]. It can also be cross-linked to enhance resistance
to shear stress [164]. Moreover, starch shows remarkable soil erosion
control by aggregating soil particles [41,165].

Casein

Casein is a phosphorous protein biopolymer that makes up 80% of
the proteins in bovine milk and has an average molecular mass of
20–25 kDa. Casein tends to coagulate and form colloidal micelles in a
suspension phase [166]. Due to its hydrophobicity, casein biopolymer
has been widely applied in various fields, including food, industrial

paints, adhesives, plastics, and medical practices [167,168]. Moreover,
its application in geotechnical and construction engineering practices is
expected to contribute to global dairy and milk waste reduction, as the
reported total global amount (135.8 million tons per annum) is esti-
mated to produce 3.3 million tons of casein, which can treat approxi-
mately 127.4 × 106 m3 of soil with 2% casein in the soil mass [166].

The hydrophobicity of casein has motivated research on soil treat-
ment using casein to enhance the wet strength [166], shear strength
[169], and hydraulic conductivity [170] of soils. In particular, casein
has shown higher wet strength (i.e., 650 kPa of UCS with a 5% mixing
ratio on a sand and clay mixture) than other BPST conditions [166].

Geotechnical engineering properties and behaviors induced by
biopolymer-based soil treatment (BPST)

Soil consistency

Generally, the undrained shear strength of soil at the plastic limit
(PL) and LL states are known to be around 170 kPa and 1.7 kPa,

Fig. 4. Unconfined compressive strength of xanthan gum-treated soils with
various soil types [49,176].

Fig. 5. Unconfined compressive strength of biopolymer-treated residual soils in
dried and wet conditions (Gellan gum and Agar gum) [48].

Fig. 6. Stress–strain relationship and elastic modulus (E50) under unconfined
compressive test [48,49]. (a) Xanthan gum treated sand and kaolinite. (b)
Gellan gum treated clayey soil (CL). (c) Agar gum treated clayey soil (CL).
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respectively [171]. Thus, soils with a higher LL are expected to show
higher undrained strength values in the same soil water content (w)
condition, indicating the importance of the liquidity index (LI = (w-
PL)/PI) of soils on shear resistance [172].

A study has shown that BPST can alter the classification (i.e.,
Unified Soil Classification System) of clayey soils due to its effect on the
soil consistency (LL) and electrical sensitivity variations [70]. BPST
mostly enhances the LL of soils by increasing pore fluid viscosity and
soil wettability due to the presence of biopolymers among the soil
particles, as shown in Fig. 2 [82,136,173]. However, BPST decreases
the LL of clays with high specific surfaces and cation exchange capacity,
such as montmorillonite, as direct ionic bonding between montmor-
illonite particles and xanthan gum is postulated to facilitate particle-
biopolymer aggregation, resulting in a LL decrease [70].

Soil strengthening

Unconfined compressive strength
The maximum compressive stress that a sample can withstand under

zero confining stress, the UCS is one of the key indicators of the geo-
technical engineering behaviors (e.g., undrained shear strength, re-
lative consistency) of cohesive soils [174]. Biopolymers generally in-
crease the UCS of dry soils by inducing conglomeration and aggregation
among soil particles and/or generating electrostatic adhesion between
soil particles and biopolymers, as shown in Fig. 3. Throughout this
paper, biopolymer content indicates the biopolymer to soil ratio in
mass.

Fig. 3a shows the UCS of biopolymer-treated coarse soils dried for
28 days at room temperature [48,79,169,175]. The UCS increases with

Fig. 7. Relationship between elastic modulus (E) and unconfined compressive strength (UCS) of biopolymer-treated soils compared with other treated geomaterials
[48,54,182–184].

Fig. 8. Shear strength parameters (cohesion and friction angle) of biopolymer-treated soils [46,54,79,142,143,169,177].

I. Chang, et al. Transportation Geotechnics 24 (2020) 100385

8



biopolymer content [79]; an example is agar gum-treated sand
(0.8 MPa at 1%; 2.4 MPa at 3%) [48]. In addition, 2% gellan gum-
treated sand (SP) has a UCS of 435 kPa, higher than that of 12% ce-
ment-treated sand (380 kPa) [54]. Attempts to use corn starch to
strengthen soil show that 16.6% starch-treated soil has UCS values up to
26 MPa [175]. Recently, casein biopolymer has been introduced as a
soil binder with a high strengthening effect, as 6.66% casein increases
the UCS of sandy soils by up to 5.63 MPa [166]. Casein BPST
strengthening effect depends on dehydration conditions, with the most
effective strengthening being induced at 60 °C drying for 14 days [169].

The biopolymer strengthening effect is more significant in fine soils,
as shown in Fig. 3b [50,146,176,177]. For clays, 2% xanthan gum BPST
enhances the UCS of montmorillonite by up to 2.9 MPa, while the same
treatment improves the UCS of kaolinite up to 1.3 MPa [176]. Gellan
gum also shows significant soil strengthening effects, as the UCS of 3%
gellan gum-treated sandy lean clay (CL) reaches up to 12.6 MPa [48].
Furthermore, β-glucan biopolymer shows significant strengthening in
sandy lean clay (CL), with 0.25% and 0.5% content having UCS values
of 2.17 MPa and 4.31 MPa, respectively, both higher than the UCS of
10% cement treated condition (2.65 MPa) [50]. 2% BPST on silt with
xanthan gum, starch, and guar gum, reveals UCS values of 337 kPa,
575 kPa, and 842 kPa, respectively [146]. Chitosan BPST shows high
strengthening efficiency, where 0.16% of chitosan enhancing the UCS
of low plastic clayey soil (CL) up to 2.9 MPa [177].

Fig. 4 shows the UCS characteristics of xanthan gum BPTS with
various soil types [49,176]. The UCS of soils gradually increases with
higher xanthan gum content and dehydration due to xanthan gum hy-
drogel condensation and subsequent biofilm formation
[49,142,176,178]. The optimum xanthan gum content for sandy soil
(SP) strengthening has been reported to be around 1.5–2%, improving

UCS values by 0.9–1.2 MPa [49]. Although xanthan gum treatment
enhances the UCS of sands, its strengthening effect is much higher for
clayey soils such as sandy lean clay (CL), kaolinite, and montmorillonite
as shown in Fig. 4 [49,176], due to the biopolymer-clay matrix for-
mation induced by ionic and hydrogen bonds between xanthan gum
and clay particles [46].

The UCS values of BPTSs with water content variation are presented
in Fig. 5 [48]. Strength reduction via wetting and accompanying sa-
turation is regarded to be the result of the hydrogel swelling of hy-
drophilic biopolymers [179–181]. Although the wet strength of BPTS is
lower than that of dry BPTS, the saturated strength of BPTS is sig-
nificantly higher than that of untreated soils, thus, BPST shows pro-
mising applicability in waterfront or wetland geotechnical engineering
practices.

Stress–strain behavior under uniaxial loading
Fig. 6 shows the stress–strain relationships of xanthan gum, gellan

gum, and agar gum BPTSs obtained by unconfined compression, where
dried BPTSs have higher elastic stiffnesses (E50) than untreated soils
[48,49]. For xanthan gum, 1% BPST increases the E50 up to 9 times
(2 MPa to 18 MPa) for sand and 4.5 times (6 MPa to 27 MPa) for
kaolinite. Moreover, thermo-gelating biopolymer treatment shows a
remarkable E50 increase, with 1% of thermo-gelated gellan gum and
agar gum BPST increasing the E50 of clayey soil to 168 MPa and
98 MPa, respectively [48].

Fig. 7 presents the overall relationship between the elastic modulus
(E) and UCS of BPTSs and other engineered geomaterials (e.g., cement,
gravel, and MICP-treated soil) [48,54,182–184]. Both E and UCS values
show a global increasing trend regardless of binder type, where thermo-
gelated gellan gum BPST on clay showing competitive strengthening
compared to other bio-based soil treatment conditions.

Shear strength
Shear strength refers to the external load a soil can sustain without

structural failure, which is an important factor for reliable and safe
design of geotechnical engineering structures such as slopes, earth
walls, embankments, and foundations [185]. Various BPST approaches
have been introduced to improve the shear strength parameters (ap-
parent cohesion and friction angle) of different types of soils in wet and
dry conditions, as summarized in Fig. 8 [46,54,79,142,143,169,177].

BPST enhances apparent cohesion significantly in both cohesive
(clay) and cohesionless (sand) soil regardless of soil saturation com-
pared to the untreated condition, which is presented as white blocks in
Fig. 8. Fig. 8 shows that BPST leads to a major increase in soil inter-
particle cohesion regardless of soil moisture content. For instance,
0.16% of chitosan and 2% of gellan gum BPST on Shiraz-Iran clay and
pure kaolinite in a wet state increases inter-particle cohesion from
10 kPa (untreated clay) to 30 kPa and 18 kPa (untreated kaolinite) to
82 kPa, respectively [46,177]. Xanthan gum (c = 91 kPa), agar gum
(c= 111 kPa), and gellan gum (c= 104 kPa) also significantly increase
the cohesion of several types of cohesionless SP sands [79,142].
Moreover, the dehydration of biopolymer hydrogels exceeds the inter-
particle cohesion of sands over 150 kPa [54,143,169].

Meanwhile, BPST seems to have minor impact to the inter-particle
friction angle of soils (Fig. 8). At wet states, friction angle of BPTSs
tends to be similar to or less than the friction angle of untreated soils,
where the hydrated biopolymer hydrogels occupying pore spaces can be
regarded to have negligible effect on inter-granular friction. However,
drying which accompanies biopolymer hydrogel dehydration enhances
the inter-particle friction angle of sands compared to saturated condi-
tions due to the condensation of biopolymer biofilms, which promotes
the particle conglomeration effect of BPST via surface coating and inter-
particle bridging [54,143]. For instance, the inter-particle friction angle
of pure sand increases from 27.9° (untreated) to 47° with 2% of gellan
gum BPST in a dried state [54].

Fig. 9 shows the inter-particle cohesion and friction behavior of

Fig. 9. Shear strength parameters (cohesion and friction angle) of xanthan gum-
treated clays with time [176]. (a) Montmorillonite. (b) Kaolinite.
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dehydrated xanthan gum-treated clays with drying time [176]. Al-
though both inter-particle cohesion and friction angle increase after
28 days of sample preparation, attributed to xanthan gum hydrogel
dehydration, the further friction angle increase for up to 90 days is
postulated to be affected by the thixotropy behavior of xanthan gum-
clay matrices [49].

Soil stiffness including dilation and elastic wave velocity
Fig. 10 presents the shear stress-horizontal displacement relation-

ships of gel-type BPTSs obtained by direct shear test under 50 kPa
vertical confinement, where shear stiffness (G50) generally increases
with higher biopolymer contents regardless of soil moisture content
[46,54,143]. In a dried condition, gellan gum BPST renders higher G50

values than xanthan gum BPST with the same sand material (jumunjin
sand, Korea) and biopolymer content, as shown in Fig. 10a and 10b
[46,143]. For the same BPST condition, soil moisture content becomes
an important factor in BPTS shear stiffness, as G50 values increase sig-
nificantly from the wet (Fig. 10c) to the dried (Fig. 10b) state due to the
dehydration of biopolymer hydrogels and the subsequent inter-granular
coating and bridging effect induced by biofilms [46,54]. For gellan gum
BPST on sandy clay in a wet state (Fig. 10d), despite G50 values in-
creasing with biopolymer content, the G50 values are lower than those
of sand (Fig. 10c) at the same soil moisture content. This is attributed to
gellan gum-clay matrix formation, which makes BPTS more ductile and
rendering residual behavior under shearing [46].

BPTSs generally show dilatancy increase with higher biopolymer
content, especially in a dried state (Fig. 11) [46,143]. However, once a
dried BPTS is subjected to re-saturation, dried biopolymer biofilms
adsorb water and swell to hydrogels due to the hydrophilicity of bio-
polymers, where the swelling seems to reduce not only the shear stiff-
ness but also the dilatancy of BPTSs inducing contractive volume

change behavior under shearing [46,143].
For xanthan gum-treated sand in a dry state (the rectangular points

in Fig. 11a, b, and c), the condensed biofilm becomes thicker as xanthan
gum content increases, resulting in more brittle and dilative behavior at
shear failure. As xanthan gum-treated soil becomes saturated, the
condensed xanthan gum gels adsorb water and swell due to hydro-
philicity, resulting in stiffness reduction (the rhombic points in Fig. 11a,
b, and c). While 0.5% and 1.0% of xanthan gum content is enough for
complete swelling and reduction in dilative behavior, incomplete
swelling occurs in the 2.0% xanthan gum condition, resulting in similar
dilation behavior with the untreated state. Gellan gum-treated sand is
also expected to show dilatancy reduction via re-saturation according to
the gradual strength and stiffness reductions with repeating wetting–-
drying cycles, as reported by Chang et al. [98]. On the other hand,
gellan gum BPST on sand mixed with kaolinite at a 1:1 ratio presents
more brittle and dilative behavior as gellan gum content increases from
1% to 5% due to a structural agglomeration effect (Fig. 11d).

Finally, the presence of β-glucan in soil enhances shear stiffness.
Previous research has measured elastic wave velocity with β-glucan-
treated KRS, finding that the β-glucan increased the shear (S) wave
velocity and shear modulus by enhancing the soil structure (Fig. 12)
[136]. However, the compressive (P) wave velocity and elastic modulus
were not drastically affected [136]. Besides, a shear modulus increase
in fine quartz sand (Ottawa F110) via dextran biopolymer treatment
has been observed, with the velocity and attenuation responses of both
P and S waves of dextran-treated sand being mainly governed by the
amount of biopolymer accumulation (degree of biopolymer saturation)
and elastic stiffness of biopolymer hydrogels in inter-granular pore
spaces [186].

Fig. 10. Horizontal displacement-direct shear stress evolution including shear stiffness in various soil and biopolymer conditions [46,54,143] (a) Xanthan gum
treated sand in dry state, (b) Gellan gum treated sand in dry state, (c) Gellan gum treated sand in initial (wet) state, (d) Gellan gum treated sand and kaolinite (1:1)
mixture soil in initial (wet) state.
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Soil erosion control

Surface soil erosion is an important concern in geotechnical en-
gineering and other fields such as climatology, agriculture, military,
hydrology, and human health [15,186]. Thus, many research have been
attempted to control and reduce soil erosion through irrigation control,
afforestation, and soil stabilization with binder materials [41,187–189].
However, conventional approaches have limitations in terms of ne-
cessity for frequent application and economic ineffectiveness [64].
Moreover, chemical additives (e.g., PAM) raise environmental and

health concerns, restricting their usage nowadays [17,22,190].
As an alternative, biological approaches have been attempted to

enhance the erosion resistance of soils with microbial precipitation
[69,191] and BPST [7,41,55,64,192,193]. Biopolymers enhance the
stability and surface erosion resistance of slopes and dam structures via
multiple interactions, including bio-aggregation, bio-crusting, bio-
coating, bio-clogging, and bio-cementation [194].

Fig. 13 shows the soil erosion response of BPTSs assessed by the
laboratory test methods summarized in Table 2 [15,41,57,64,192].
Despite BPST is effective in reducing soil erosion, especially xanthan
gum, β-glucan, and chitosan biopolymers show significant erosion re-
sistance, with accumulated erosion ratios less than 1% [57,64]. Both
biopolymer solution spraying and directly mixing it into the soil (prior

Fig. 11. Dilation behavior of xanthan treated sand and gellan gum treated sand and kaolinite (1:1) mixture during direst shear testing under vertical confinement of
50 kPa [46,143]. (a) 0.5% of xanthan gum treated sand, (b) 1.0% of xathan gum treated sand, (c) 2.0% of xanthan gum treated sand, (d) 1%, 2%, and 5% of gellan
gum treated sand and kaolinite mixture.

Fig. 12. Elastic wave velocity (compressive and shear wave) with vertical ef-
fective stress variation of beta-glucan treated sandy lean clay (Korean residual
soil) [136].

Fig. 13. Erosion behavior of biopolymer-treated soils [15,41,57,64,192].
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biopolymer and soil solution mixing) methods are adequately effective
for surface erosion control [64]. Despite BPST can be regarded as a
sufficient soil erosion mitigation approach, exposure to real environ-
ment conditions in situ result in different erosion response than in la-
boratory tests, mostly showing higher erosion ratio in the field, as il-
lustrated in Fig. 14 [41]. Thus, further improvement to the in situ
performance and durability of biopolymers is required for their reliable
practical implementation. In terms of economic efficiency, xanthan
gum seems to be more economically feasible than other exopoly-
saccharides and starch [195].
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Fig. 14. Erosion behavior of biopolymer-treated soils assessed in laboratory and
field conditions [41].

Fig. 15. Biopolymer effect to the viscosity of cement slurries [196,235].

Fig. 16. Shear rate-dependent apparent viscosity relationship of biopolymer-
cement mixtures [198].
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Ground injection

The use of biopolymers in ground injection (grouting) has been
investigated to control the viscosity and prevent the separation of

cement-based grout materials [196–198]. Biopolymers are effective in
controlling the bleeding and washout of cement grouts due to their
hydrophilic capacity and adhesive force for holding cement particles
[199]. Fig. 15 shows the viscosity increase of cement grouts with BPST,
where a higher shear rate results in a reduction of the apparent viscosity
of biopolymer cement grouts [196]. Although biopolymer treatment
increases the viscosity of cement grouts, which raises concerns about
grouting pressure and injection efficiency [2], the pseudoplasticity of
biopolymer hydrogels significantly reduces the apparent viscosity of
grout materials, as shown in Fig. 16 [198]. As recent studies show the
viability of biopolymer application for ground hydraulic conductivity
control [39,117,173,174], further research is expected to implement
BPST for grouting purposes.

Meanwhile, biopolymers show a substantial increase in viscosity in
high-salinity water, high shear resistance, and stability at wide tem-
perature and pH ranges [52,200], making biopolymer application
adequate in oil recovery practices [200–202].

Pavement and earth stabilization

As most pavements are engineered with petroleum- or cement-based
binders such as asphalt and concrete. There have been several attempts
to find sustainable solutions and apply BPST to pavement and earth
stabilization. Biopolymers such as starch have been used as supple-
mental additives for cement- or lime-based soil binders for sub-base
stabilization in road construction [61,203]. Moreover, bio-based en-
zymes have been suggested to strengthen and stabilize the sub-grade of
pavements [204]. Enzymes catalyze the chemical reaction (soil-to-ion
interaction) between clay particles and cationic organic matter within
the soil, resulting in an overall increase of soil strength, although en-
zyme activity depends very much on soil type and environmental
conditions [205–207]. MICP may also be applicable for sub-ground soil
stabilization [1].

Biopolymers have also been studied in terms of earth stabilization
and pavement engineering [122,208,209]. Recently, attempts have
been made to use gel-type biopolymers (e.g., xanthan gum and gellan
gum) to enhance the strengthening parameters of sandy soils [48,49],
where 1% gel-type BPST induces strengthening greater than that of
10% cement treatment in terms of UCS and ground bearing capacity
[54]. However, the practical implementation of gel-type BPST also has
limitations in terms of durability and strength reduction with repeated
wetting and drying [98].

Fig. 17. Pore-clogging effect induced by continuous biopolymer solution infusion into soil masses assessed by laboratory tests [52,142].

Fig. 18. Biopolymer treatment effect to the hydraulic conductivity of biopo-
lymer-sand mixtures [54,147].

Fig. 19. Soil-water characteristic curves of hydrogel (Jalma gel) treated sand
[213].
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Ground water control

In geotechnical engineering, ground hydraulic conductivity control
is an important manner for soil liquefaction potential mitigation and
ensuring the stability of soil dams or seepage structures [210]. In fact,
the presence of biopolymer hydrogels or other biomaterials can affect
the hydraulic conductivity of soils by altering the water retention
characteristics (suction potential) [211] or inducing soil pore clogging
[69,212]. Regardless of the biopolymer phase in soil (e.g., dried bio-
film, moist hydrogel), when BPTSs are subjected to water, biopolymers
swell via hydrophilic adsorption and decrease paths for fluid flow [54],
resulting in a significant reduction to the hydraulic conductivity of
BPTSs [52,54,147,213]. Fig. 17 shows the hydraulic conductivity be-
haviors of sands, where pores are clogged by continuous biopolymer
solution flow [52,142]. In details, 11 days of biopolymer solution in-
jection reduces the hydraulic conductivity of sand (untreated:
1.74 × 10−4 m/s) by 1/10 to 1/1000 times, depending on biopolymer
type [52], while higher biopolymer solution concentrations render
lower permeability values [142].

Fig. 18 shows the hydraulic conductivity of directly mixed biopo-
lymer-treated sands [54,147], indicating that the permeability values of
biopolymer-treated sands are significantly lower than those of sands

clogged by biopolymer solutions (Fig. 17). However, there are concerns
about gradual hydrogel weakening (concentration decrease by con-
tinuous water adsorption) and wash-out under high hydraulic pressure
conditions [214].

Soil water retention

As biopolymers can adsorb extreme amount of water relative to
their own mass (e.g., 1 g of xanthan gum can adsorb 100 g of water),
BPST alters distinctive soil–water characteristic (SWC) by enabling
higher water retention [57,115,127,213,215]. Moreover, in the pre-
sence of water, biopolymers swell to viscous hydrogels that fill pore
spaces, leading to low fluid permeability even under loose soil density
[49,216–218].

The water retention behavior of BPTSs differs with biopolymer
types and contents [115,213,219]. For instance, a study shows 1% BPST
with xanthan gum, scleroglucan, and dextran enhancing the water re-
tention of sand [115]. Another hydrophilic hydrogel, Jalma gel, induces
higher initial volumetric water content conditions with biopolymer
content increase, as shown in Fig. 19 [213].

Fig. 20. Vegetation promotion effect of BPST assessed in laboratory [57] (a) Culture soil. (b) Inorganic silty loam (ML).

Fig. 21. Construction plan of BPST implementation for slope surface protection (Seosan, Korea; May 2016).
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Vegetation growth promotion

Generally, plants require water for their growth and metabolic
processes (e.g., photosynthesis); however, most water supplied to ve-
getation is lost through transpiration, guttation [220], and gravitational
infiltration of soils with low water retention capacity [221]. In fact,
excessive water drainage in sandy soils can result in scarcity of water
around the root zone, hindering vegetation growth [222], and severe

drought conditions are known to be a limiting factor for seedling sur-
vival and germination [211].

BPST improves water retention in soil due to the hydrophilic char-
acteristic of biopolymer hydrogels, so attempts have been made to use
biopolymers to promote the growth of plants [57,223,224]. Fig. 20
presents a laboratory vegetation growth experiment conducted by
Chang et al. [57] that shows BPST promoting both seed germination
and overall growth in cultured soil (Fig. 20a) and natural inorganic silty
loam (ML) (Fig. 20b). Specifically, BPTSs show high water retention
behavior even with loose particle composition (density), providing an
appropriate environment for seed germination and the accompanying
root penetration of vegetation in soils [57].

Discussion

Potential in situ applications of BPTS: Case study examples

Slope surface treatment using BPTS
As BPST shows sufficient effectiveness in soil erosion control

[41,57,64,192,193], a recent study attempted to use BPST to control
surface erosion in an earth-compacted embankment in the field.

For this BPST field application, biopolymer solutions and in situ soil
were pressurized and sprayed using hydraulic (biopolymer solution)
and pneumatic (in situ soil) pump equipment to form BPTS layers
(thickness 15–20 cm) on embankment slope surfaces. In addition, ve-
getation seeds (Kentucky bluegrass, perennial ryegrass, tall fescue, and
miscanthus) were sprayed on the BPTS layers to verify the growth be-
havior of vegetation on BPTS mixtures in the field. The pilot con-
struction site (Seosan, Korea) was divided into three sections for dif-
ferent purposes (section 1: xanthan gum BPST for vegetation growth
promotion; section 2: casein BPST for surface erosion control; section 3:
xanthan gum-starch combined BPST for surface erosion control and
weed mitigation), as shown in Fig. 21.

In situ implementation was conducted according to the procedure
described in Fig. 22. Surface cleaning was performed by removing ex-
isting plants and flattening the slope surface with a backhoe (Fig. 22a).
In situ soil was sieved to remove oversized aggregates, transferred to the
hopper by a conveyor belt, and sprayed via pneumatic pressure using a

Fig. 22. Overall procedure of BPST implementation for slope surface protection (Seosan, Korea; May 2016).

Fig. 23. Field monitoring results after 100 days since BPST field application in
Seosan, Korea. (a) Shear strength. (b) Surface vegetation growth behavior.
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high-pressure air compressor (Ingersoll Rand XP825) (Fig. 22b). Si-
multaneously, biopolymer was dissolved into water using an electric
mixer (Bosch GBM 1600RE) to prepare a uniform biopolymer solution
(Fig. 22c). Soils and biopolymer solutions were transported through
separate pipes and sprayed by a dual-channel nozzle at the end
(Fig. 22d). After soil-biopolymer spraying, seeds were uniformly seeded
(25 g/m2) on the BPST surfaces. After completion of slope construction
(Fig. 22e), some sections were coated with a secondary biopolymer
spray to check the feasibility of multiple biopolymer spraying.

In situ monitoring was conducted after 100 days. Vegetation density
was counted via site survey, while shear strengths were assessed via a
field vane shear test (H-4212, Humboldt) and a laboratory direct shear
test with undisturbed samples collected from the site. BPTS sections 1
through 3 (from Fig. 21) all showed increased shear strength (labora-
tory direct shear and field vane shear) compared to the untreated
condition, as shown in Fig. 23a. Meanwhile, a significant increase of
vegetation density (number of sprouts per unit area) was observed in
the vegetation focused BPST sections (1–1 and 1–2) compared to the
others (2 and 3–1) and the untreated condition (Fig. 23b).

Fig. 24 shows the in situ vegetation growth response of another BPST
field application for embankment surface stabilization (Andong, Korea).
Xanthan gum and starch-based biopolymer compounds were im-
plemented via a wet-spraying method, and BPST was verified to induce
high vegetation density and growth even a year after site im-
plementation.

Earth stabilization using BPTS
A field implementation attempted to verify the feasibility of BPST in

earth stabilization (pavement). A non-paved pedestrian trail (50 m long
and 1 m wide) was planned to be established with BPTS mixtures on-
site (Daejeon, Korea; Fig. 25a). The overall construction process fol-
lowed: (1) site clearing (removing surface vegetation and top soil, fol-
lowed by surface compaction (Fig. 25b)); (2) in situ soil, biopolymer
(xanthan gum), and water mixing (Fig. 25c); (3) deposit of the BPTS
mixture (10 cm thickness) on the target site (Fig. 25d); (4) compaction
and surface leveling via vibrating compactor (Fig. 25e); and (5) com-
pletion (Fig. 25f).

The constructed BPTS pedestrian trail showed effective surface

Fig. 24. Vegetation promotion effect of BPST embankment surface after 3 weeks, 7 weeks, and 1 year after site implementation (September 2017) in Andong, Korea.
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stiffness (Young’s modulus > 120 MPa, measured via H-4140
Humboldt GeoGauge) and high surface erosion resistance. However,
this case study raised questions about the further development of bio-
polymer-specific field equipment and considered the rheological char-
acteristics of biopolymers and biopolymer-soil mixtures in terms of
facilitating construction effectiveness.

Environmental, economic, and social benefits of BPTS technology

Currently, biopolymers are economically less competitive than
conventional soil binders such as cement. For instance, to treat a unit
surface area (1 km2) with a 2.5 cm thick uniform soil-binder mixture
(approximately 40 × 103 tons of sand), a 0.5% BPST would cost be-
tween 600,000 USD (xanthan gum) to 9 million USD (β-glucan), while
an ordinary 10% cement mixture would cost only 240,600 USD [57].
However, the expanded applications of biopolymers (e.g., medicine,
cosmetics, food, farmland irrigation, construction, and geotechnical
engineering), as shown in Fig. 26 [225,226], and the resultant increase

Fig. 25. Overall procedure of BPST implementation for earth surface stabilization (Daejeon, Korea; October 2015).

Fig. 26. Global biopolymer production and relevant market segments in 2012
[225,226].

Fig. 27. Global biopolymer market (status and growth) [7,227,228].

Fig. 28. Global market price of xanthan gum (1980–2020) [7,227,229]
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in production (Fig. 27) are expected to gradually decrease the cost of
biopolymers and improve the economic feasibility of BPST usage in
construction and civil engineering [7,227,228]. Moreover, active ap-
plication of BPST in these fields could also reduce the cost of biopoly-
mers via mass production and the expansion of the global biopolymer
market. For example, as shown in Fig. 28, while the price of xanthan
gum in the 1960 s was about 30,000 USD/ton, it has drastically
dropped to 1500–4000 USD/ton nowadays due to its broad usage in
various industries [7,227,229].

BPST is a promising method not only for improving the geotechnical
properties of soil in engineering but also for environmentally sound and
sustainable development. The world population of 7.3 billion in 2015 is
expected to reach 8.5 billion by 2030 [230], significantly increasing the
burdens of food production to sustain human life. The use of BPST in
arid and semi-arid regions can serve to improve water use efficiency
and promote the development of agriculture to combat future global
food shortages and scarcity [57].

Future challenges of BPST technology

One recent study showed that 80.1 tons of biopolymer are required
to form a uniform 1 cm thick 0.5% biopolymer-soil mixture on a 1 km2

surface area [48]. Thus, the entire global biopolymer production in
2011 (0.4 million tons) could only treat 5,242 km2; however, the
treated area could be 4 times larger in 2015 given the rapid growth of
the biopolymer market. While the global biopolymer market is expected
to grow by up to 4.6 million tons in 2021 (Fig. 27) [7,227,228], even
this capacity would still cover only 0.7% of the Sahara. Therefore, it has
been suggested that biopolymers be used as a supplement to enhance
the efficiency and performance of pre-existing desertification counter-
measures such as afforestation, windbreaks, and wind belts by enhan-
cing soil erosion resistance and vegetation growth [57,141,231].

However, most studies have remained at the laboratory research
level. Advanced studies are required to develop in situ implementation
methods, design criteria and relevant quality control guidelines, and
ensure the durability and reliability of BPST under real environmental
circumstances. Moreover, as most biopolymers are hydrophilic and
easily adsorb water and swell to hydrogels, there is a concern that BPST
might lead to severe swelling and poor drainage due to biopolymer-
induced pore clogging. Thus, BPST application must be used with
cautious consideration of the site condition (e.g., location of the ground
water table) and construction purpose.

Conclusions

BPST has been introduced in the fields of construction and geo-
technical engineering, with biopolymers serving as binders for soil
treatment and ground improvement, and numerous studies have been
conducted to verify its engineering and economic feasibility.
Biopolymers such as agar gum, guar gum, gellan gum, dextran, β-
glucan, xanthan gum, chitosan, starch, and casein have been commonly
studied. Current findings show the following geotechnical engineering
responses of BPST:

• Strength – BPST significantly enhances the strength of soils, mostly
through the improvement of interparticle cohesion rather than al-
tering the friction angle of the soil. For instance, BPST induces a
significant UCS (200 kPa–12.6 MPa) and cohesion (40–235 kPa)
increase, while friction angle shows less variation depending on soil
type, biopolymer type, biopolymer content, and moisture condition.
The dehydration of hydrogels renders higher soil strength than in
submerged or saturated conditions.

• Consistency – BPST generally increases the liquid limit of soils due
to the water adsorption and enhanced pore-fluid viscosity via bio-
polymer hydrogel formation, resulting in an increase of undrained
shear strength.

• Erosion resistance – As BPST enhances the interparticle cohesion
and undrained shear strength of soils, biopolymer treatment shows
sufficient reduction in severe surface erosion and land degradation
in arid, semi-arid, and highly degradable regions.

• Ground water control – Most hydrophilic biopolymers show high
water-holding capacity, resulting in the improved water retention
behavior of BPTSs. However, swelled biopolymer hydrogels induce
pore clogging, which significantly reduces the hydraulic con-
ductivity of soils. For instance, BPST reduces the hydraulic con-
ductivity of sand by the order of 10–4 depending on biopolymer
type and content.

• Ground improvement – The strengthening and hydraulic con-
ductivity control characteristics of BPST have advantages in ground
improvement. For instance, biopolymers can become a grouting
material, as numerous studies show biopolymer grout materials to
be adequate in terms of ground permeability control and site
workability.

• Sustainability – Most biopolymers are environmentally friendly be-
cause they are mostly microbial hydrocarbons with low CO2 foot-
prints compared to conventional soil binders. Moreover, recent
studies show that BPST promotes seed germination and the growth
of vegetation in soil, which becomes another benefit in terms of
sustainability.

Given all of the above, biopolymers are expected to become a new,
environmentally friendly material for civil and geotechnical en-
gineering. Current field implementations indicate the feasibility and
promising potential of biopolymer usage in slope surface protection and
earth stabilization. However, while biopolymers show more benefits,
further research is required to narrow the gap between laboratory
studies and field implementation. In addition, construction equipment
must be developed or modified in consideration of the chemical
rheology of biopolymers.
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